Artificial Intelligence

Auto Added by WPeMatico

Build an AI-powered automated summarization system with Amazon Bedrock and Amazon Transcribe using Terraform

Extracting meaningful insights from unstructured data presents significant challenges for many organizations. Meeting recordings, customer interactions, and interviews contain invaluable business intelligence that remains largely inaccessible due to the prohibitive time and resource costs of manual review. Organizations frequently struggle to efficiently capture and use key information from these interactions, resulting in not only productivity […]

Build an AI-powered automated summarization system with Amazon Bedrock and Amazon Transcribe using Terraform Read More »

Evaluating generative AI models with Amazon Nova LLM-as-a-Judge on Amazon SageMaker AI

Evaluating the performance of large language models (LLMs) goes beyond statistical metrics like perplexity or bilingual evaluation understudy (BLEU) scores. For most real-world generative AI scenarios, it’s crucial to understand whether a model is producing better outputs than a baseline or an earlier iteration. This is especially important for applications such as summarization, content generation,

Evaluating generative AI models with Amazon Nova LLM-as-a-Judge on Amazon SageMaker AI Read More »

Building cost-effective RAG applications with Amazon Bedrock Knowledge Bases and Amazon S3 Vectors

Vector embeddings have become essential for modern Retrieval Augmented Generation (RAG) applications, but organizations face significant cost challenges as they scale. As knowledge bases grow and require more granular embeddings, many vector databases that rely on high-performance storage such as SSDs or in-memory solutions become prohibitively expensive. This cost barrier often forces organizations to limit

Building cost-effective RAG applications with Amazon Bedrock Knowledge Bases and Amazon S3 Vectors Read More »

Implementing on-demand deployment with customized Amazon Nova models on Amazon Bedrock

Amazon Bedrock offers model customization capabilities for customers to tailor versions of foundation models (FMs) to their specific needs through features such as fine-tuning and distillation. Today, we’re announcing the launch of on-demand deployment for customized models ready to be deployed on Amazon Bedrock. On-demand deployment for customized models provides an additional deployment option that

Implementing on-demand deployment with customized Amazon Nova models on Amazon Bedrock Read More »

Amazon Bedrock Knowledge Bases now supports Amazon OpenSearch Service Managed Cluster as vector store

Amazon Bedrock Knowledge Bases has extended its vector store options by enabling support for Amazon OpenSearch Service managed clusters, further strengthening its capabilities as a fully managed Retrieval Augmented Generation (RAG) solution. This enhancement builds on the core functionality of Amazon Bedrock Knowledge Bases , which is designed to seamlessly connect foundation models (FMs) with

Amazon Bedrock Knowledge Bases now supports Amazon OpenSearch Service Managed Cluster as vector store Read More »

Build AI-driven policy creation for vehicle data collection and automation using Amazon Bedrock

Vehicle data is critical for original equipment manufacturers (OEMs) to drive continuous product innovation and performance improvements and to support new value-added services. Similarly, the increasing digitalization of vehicle architectures and adoption of software-configurable functions allow OEMs to add new features and capabilities efficiently. Sonatus’s Collector AI and Automator AI products address these two aspects

Build AI-driven policy creation for vehicle data collection and automation using Amazon Bedrock Read More »

Advanced fine-tuning methods on Amazon SageMaker AI

This post provides the theoretical foundation and practical insights needed to navigate the complexities of LLM development on Amazon SageMaker AI, helping organizations make optimal choices for their specific use cases, resource constraints, and business objectives. We also address the three fundamental aspects of LLM development: the core lifecycle stages, the spectrum of fine-tuning methodologies,

Advanced fine-tuning methods on Amazon SageMaker AI Read More »

Build a conversational data assistant, Part 2 – Embedding generative business intelligence with Amazon Q in QuickSight

In Part 1 of this series, we explored how Amazon’s Worldwide Returns & ReCommerce (WWRR) organization built the Returns & ReCommerce Data Assist (RRDA)—a generative AI solution that transforms natural language questions into validated SQL queries using Amazon Bedrock Agents. Although this capability improves data access for technical users, the WWRR organization’s journey toward truly

Build a conversational data assistant, Part 2 – Embedding generative business intelligence with Amazon Q in QuickSight Read More »

Build a conversational data assistant, Part 1: Text-to-SQL with Amazon Bedrock Agents

What if you could replace hours of data analysis with a minute-long conversation? Large language models can transform how we bridge the gap between business questions and actionable data insights. For most organizations, this gap remains stubbornly wide, with business teams trapped in endless cycles—decoding metric definitions and hunting for the correct data sources to

Build a conversational data assistant, Part 1: Text-to-SQL with Amazon Bedrock Agents Read More »

Use K8sGPT and Amazon Bedrock for simplified Kubernetes cluster maintenance

As Kubernetes clusters grow in complexity, managing them efficiently becomes increasingly challenging. Troubleshooting modern Kubernetes environments requires deep expertise across multiple domains—networking, storage, security, and the expanding ecosystem of CNCF plugins. With Kubernetes now hosting mission-critical workloads, rapid issue resolution has become paramount to maintaining business continuity. Integrating advanced generative AI tools like K8sGPT and

Use K8sGPT and Amazon Bedrock for simplified Kubernetes cluster maintenance Read More »